
Weeks 4-5

8088/8086 Microprocessor 
Programming 



2

Assemble, Link and Run a Program

• Steps in creating an executable Assembly Language Program

Step Input Program Output
1. Editing Usually Keyboard Editor (Text word 

editors etc.)
Myfile.asm

2. Assemble Myfile.asm MASM Myfile.obj
3. Link Myfile.obj LINK Myfile.exe

Editor 
program

linkerAssembler

Myfile
.asm Myfile.obj

other.obj
other.obj

Myfile.exe

.model small

.stack 100h

main proc

mov ah,01h

int 21h

MOV AH, 4Ch

INT 21H

main endp

end main

Myfile.lst
Debug

or 
Codeview

Start  Stop   Length Name        Class
00000H 00007H 00008H _TEXT        CODE
00008H 00008H 00000H _DATA        DATA
00010H 0010FH 00100H STACK         STACK

Origin   Group
0000:0   DGROUP

Program entry point at 0000:0000

Myfile.map



3

Instructions

[LABEL:]    MNEMONIC [OPERANDS]  [; COMMENT]

Address identifier
Max 31 characters

: indicates it opcode
generating instruction

Does not generate any machine code
Instruction

Ex.      START:   MOV AX,BX    ; copy BX into AX 



4

Assembly Language Basics

• Character or String Constants
– ‘ABC’
– ‘X’
– “This isn’t a test”
– “4096”

• Numeric Literals
– 26
– 1Ah
– 1101b
– 36q
– 2BH
– 47d



5

Statements

• longarrayDefinition dw 1000h,1020h,1030h \
,1040h, 1050h, 1060h, 1070h

Lines may break with “\” character
• Identifier name limit of max 247 characters
• Case insensitive
• Variable

– Count1 db 50    ;a variable (memory allocation)
• Label:  

– If a name appears in the code area of the program it is a label.

LABEL1: mov ax,0
mov bx,1

LABEL2: jmp Label1 ;jump to label1



6

Assembler Directives
.MODEL SMALL ; selects the size of the memory model usually sufficient 
max 64K code 64K data
.STACK  ; size of the stack segment
.DATA    ; beginning of the data segment
.CODE   ; beginning of the code segment

Ex:
.DATA
DATAW DW 213FH
DATA1 DB 52H
SUM DB ?  ; nothing stored but a storage is assigned
Ex:
.CODE
PROGRAMNAME  PROC;  Every program needs a name

…. ; program statements
PROGRAMNAME  ENDP

END PROGRAMNAME



7

Sample Program
title Hello World Program         (hello.asm)
; This program displays "Hello, world!"
.model small
.stack 100h
.data
message db "Hello, world!",0dh,0ah,'$‘ ;newline+eoc
.code
main proc

mov ax,@data ; address of data
mov ds,ax
mov ah,9
mov dx,offset message ;disp.msg.starting at location
int 21h               ;or LEA dx,message will do!
mov ax,4C00h          ; halt the program and return
int 21h

main endp
end main



8

DataTypes and Data Definition
DATA1   DB   25
DATA2   DB   10001001b
DATA3   DB   12h

ORG  0010h ;indicates distance 
;from initial location 

DATA4   DB   “2591”
ORG   0018h

DATA5   DB   ?

This is how data is initialized in the data segment
0000       19
0001       89 
0002       12
0010       32 35 39 31 
0018       00



9

DB DW DD

.data
MESSAGE2 DB '1234567'

MESSAGE3 DW 6667H

data1 db 1,2,3

db 45h

db 'a'

db 11110000b

data2 dw 12,13

dw 2345h

dd 300h

; how it looks like in 
memory

31 32 33 34 35 36 37

67 66

1 2 3

45

61

F0

0C 00 0D 00

45 23

00 03 00 00



10

More Examples

DB   6 DUP(FFh); fill 6 bytes with ffh

DW  954
DW  253Fh     ; allocates two bytes
DW  253Fh

DD 5C2A57F2h   ;allocates four bytes
DQ     12h     ;allocates eight bytes

COUNTER1  DB  COUNT
COUNTER2  DB  COUNT



11

More assembly
• OFFSET

– The offset operator returns the distance of a label or variable from the 
beginning of its segment. The destination must be 16 bits

– mov bx, offset count
• SEG

– The segment operator returns the segment part of a label or variable’s 
address. 
Push ds
Mov ax, seg array

Mov ds, ax
Mov bx, offset array

.
Pop ds

• DUP operator only appears after a storage allocation directive.
– db 20 dup(?)

• EQU directive assigns a symbolic name to a string or constant.
– Maxint equ 0ffffh
– COUNT EQU 2



12

Memory Models

• Tiny –
– code and data combined must be less than 64K

• Small Code  
– Code <=64K and Data<= 64K (seperate)

• Medium Data 
– Code <=64K any size multiple code seg

• Compact Code 
– Data <=64K any size multiple data seg

• Large Code 
– Code >64K and Data>64K multiple code and data seg

• Huge  
– Same as the Large  except that individual vars can be >64K



13

The PTR Operator - Byte or word or doubleword?

• INC [20h] ; is this byte/word/dword? or

• MOV [SI],5
– Is this byte 05? 
– Is this word 0005?
– Or is it double word 00000005?

• To clarify we use the PTR operator
– INC BYTE PTR [20h]
– INC WORD PTR [20h]
– INC DWORD PTR [20h]

• or for the MOV example:
– MOV byte ptr [SI],5
– MOV word ptr[SI],5 



14

The PTR Operator

• Would we need to use the PTR 
operator in each of the following?

MOV AL,BVAL
MOV DL,[BX]
SUB [BX],2
MOV CL,WVAL
ADD AL,BVAL+1

.data
BVAL DB 10H,20H
WVAL DW 1000H

MOV AL,BVAL
MOV DL,[BX]
SUB [BX],byte ptr 2
MOV CL,byte ptr WVAL
ADD AL,BVAL+1



15

Simple Assembly Language Program
.MODEL SMALL
.STACK 64
.DATA

DATA1  DB  52h
DATA2  DB 29h
SUM      DB ?

.CODE
MAIN     PROC FAR

MOV AX,@DATA; copy the data segment into the DS reg.
MOV DS,AX
MOV AL,DATA1
MOV BL,DATA2; or DATA1+1
ADD AL,BL
MOV SUM,AL
MOV AH,4Ch
INT 21h

MAIN     ENDP
END MAIN



16

MS-DOS Functions and BIOS Calls

Application
Programs

Command Processor
COMMAND.COM

MS-DOS Kernel
MSDOS.SYS

BIOS
ROM plus IO.SYS

System Hardware

• BIOS is hardware specific
• BIOS is supplied by the computer manufacturer
• Resident portion which resides in ROM and nonresident portion IO.SYS 

which provides a convenient way of adding new features to the BIOS



17

80x86 Interrupts

• An interrupt is an event that causes the processor to suspend its 
present task and transfer control to a new program called the 
interrupt service routine (ISR)

• There are three sources of interrupts
– Processor interrupts
– Hardware interrupts generated by a special chip, for ex: 8259 Interrupt 

Controller.
– Software interrupts

• Software Interrupt is just similar to the way the hardware interrupt 
actually works!. The INT Instruction requests services from the OS, 
usually for I/O. These services are located in the OS.

• INT has a range 0 FFh. Before INT is executed AH usually 
contains a function number that identifies the subroutine.



18

80x86 Interrupts

• Each interrupt must supply a type number which is used by the processor 
as a pointer to an interrupt vector table (IVT) to determine the address of 
that interrupt’s service routine

• Interrupt Vector Table: CPU processes an interrupt instruction using the 
interrupt vector table (This table resides in the lowest 1K memory) 

• Each entry in the IVT=segment+offset address in OS, points to the location 
of the corresponding ISR. 

• Before transferring control to the ISR, the processor performs one very 
important task 

– It saves the current program address and flags on the stack
– Control then transfers to the ISR
– When the ISR finishes, it uses the instruction IRET to recover the flags and old 

program address from the stack
• Many of the vectors in the IVT are reserved for the processor itself and 

others have been reserved by MS-DOS for the BIOS and kernel.
– 10 -- 1A are used by the BIOS
– 20 -- 3F are used by the MS-DOS kernel



19

80x86 Interrupts
• The number after the mnemonic tells which entry to locate in the

table. For example INT 10h requests a video service.

mov..
int 10h
add

Interrupt 
service
routine
IRET

4

1
2

F000:F065

3

Entry for INT 
10



20

Interrupt Vector Table



21

Interrupts

• There are some extremely useful subroutines within 
BIOS or DOS that are available to the user through the 
INT (Interrupt) instruction. 

• The INT instruction is like a FAR call; when it is invoked
– It saves CS:IP and flags on the stack and goes to the subroutine

associated with that interrupt.
– Format:

• INT xx       ; the interrupt number xx can be 00-FFH
– This gives a total of 256 interrupts
– Common Interrupts

• INT 10h Video Services
• INT 16h Keyboard Services
• INT 17h Printer Services
• INT 21h MS-DOS services

– Before the services, certain registers must have specific values 
in them, depending on the function being requested.



22

Int 10 AH=02H SET CURSOR POSITION

New Cursor 
Location

•INT 10H function 02; setting the cursor to a specific location
–Function AH = 02 will change the position of the cursor to any 
location.

–The desired cursor location is in DH = row, DL = column



23

Int 10 03 GET CURSOR POSITION
•INT 10H function 03; get current cursor position 
MOV AH, 03
MOV BH, 00
INT 10H

•Registers DH and DL will have the current row and column positions and CX 
provides info about the shape of the cursor.

•Useful in applications where the user is moving the cursor around the screen for 
menu selection

Extremely useful in 
text modes that 

support multiple 
pages!

This is what we had 
before Windows™

•INT 10H function 05; switch between video modes by adjusting AL 
MOV AH, 05h
MOV AL, 01H; switch to video page1
INT 10H
; below will switch to video page 0
MOV AH, 05h
MOV AL, 00H; switch to video page0
INT 10H

Int 10 05 SWITCH VIDEO MODES



24

INT 10 – AH=06 SCROLL

• INT 10H Function 06 (AH = 06) Scroll a screen windows.
– Moves the data on the video display up or down. As screen is rolled 

the bottom is replaced by a blank line.  Rows:0-24 from top, bottom: 0-
79 from the left. (0,0) to (24,79). Lines scrolled can not be recovered!

– AL = number of lines to scroll  (with AL=00, window will be cleared)
– BH = Video attribute of blank rows
– CH, CL = Row,Column of upper left corner
– DH, DL = Row,Column of lower right corner

mov ah,6h

mov al,0h

mov ch,0h

mov cl,0h

mov dh,24h

mov dl,01h

mov bh,7h

int 10h

00,00 00,79

24,00 24,79

12,39

Cursor Locations

Example: Clear the 
screen by scrolling it 
upward with a normal 
attribute



25

Example Int10 06

Halt the 
program

Init reg AH for the 
program

Define the line of the 
“window” size to scroll

Define the 
“the window”



26

Example

The previous window 
scroll is applied on the 
amount of the window 

size (whole screen)

; in order to clear the entire screen
MOV AX, 0600H

;scroll the entire page

MOV CX, 0000 ; upper left
MOV DX,184FH        ; lower right
INT 10H



27

INT 10 - 0A PRINT CHARACTERS
•Write one or more characters at the current cursor position
•This function can display any ASCII character.
•AH function code
•AL character to be written
•BH video page
•CX repetition factor; how many times the char will be printed 



28

Int 10 – 0E PRINT SINGLE CHARACTER

Write out a single character 
(Also stored in AL)



29

INT 21h
•INT 21H Option 01: Inputs a single character with echo

–This function waits until a character is input from the keyboard, then echoes 
it to the monitor. After the interrupt, the input character will be in AL.



30

INT 21h
•INT 21H Option 0AH/09H: Inputs/outputs a string of data stored at DS:DX

–AH = 0AH, DX = offset address at which the data is located

–AH = 09, DX = offset address at which the data located

N M ch1 ch2 ch3 . . . . .

Chars 
allowed

Actual # 
of chars

Chars
Entered

Ex. What happens if one enters USA and then <RETURN>

0010 0011  0012  0013  0014  0015 0016  0017

06 03 55      53      41      0D     FF     FF

ORG 0010H; 
DATA1 DB 6,?,6 DUP(0FFH)

MOV AH, 0AH
MOV DX, OFFSET DATA1
INT 21H



31

INT 16h Keyboard Services

• Checking a key press, we use INT 16h function AH = 01

MOV AH, 01
INT 16h

• Upon return, ZF = 0 if there is a key press; ZF = 1 if there is no key 
press

• Whick key is pressed?
• To do that, INT 16h function can be used immediately after the call 

to INT 16h function AH=01

MOV AH,0
INT 16h

• Upon return, AL contains the ASCII character of the 
pressed key



32

Example INT 16 – 00
• BIOS Level Keyboard Input (more direct)
• Suppose F1 pressed (Scan Code 3BH). AH contains the scan code 

and AL contains the ASCII code (0).



33

Example. The PC Typewriter

• Write an 80x86 program to input keystrokes from the PC’s keyboard 
and display the characters on the system monitor. Pressing any of 
the function keys F1-F10 should cause the program to end.

• Algorithm:
1. Get the code for the key pressed 
2. If this code is ASCII, display the key pressed on the monitor and 

continue
3. Quit when a non-ASCII key is pressed

• INT 16, BIOS service 0 – Read next keyboard character
– Returns 0 in AL for non-ASCII characters or the character is simply 

stored in AL 
• To display the character, we use INT 10, BIOS service 0E- write 

character in teletype mode. AL should hold the character to be 
displayed.

• INT 20 for program termination



34

Example

MOV DX, OFFSET MES
MOV AH,09h
INT 21h ; to output the characters starting from the offset

AGAIN:    MOV AH,0h
INT 16h; to check the keyboard
CMP AL,00h
JZ QUIT ;check the value of the input data 
MOV AH, 0Eh
INT 10h; echo the character to output
JMP AGAIN

QUIT:       INT 20h
MES         DB ‘type any letter, number or punctuation key’

DB ‘any F1 to F10 to end the program”
DB 0d,0a,0a,’$’ Application



Data Transfer Instructions - MOV

35

Mnemonic Meaning Format Operation Flags 
Affected

MOV Move MOV D, S (S) (D) None

Destination Source
Memory Accumulator
Accumulator Memory
Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate
Seg reg Reg16
Seg reg Mem16
Reg 16 Seg reg
Memory Seg reg

Seg immediate
& Memory to 

memory 
are not allowed



36

Data Transfer Instructions - XCHG

Mnemonic Meaning Format Operation Flags 
Affected

XCHG Exchange XCHG D,S (Dest) ↔
(Source)

None

Destination Source
Reg16 Reg16
Memory Register
Register Register
Register Memory

Example: XCHG [1234h], BX



37

Data Transfer Instructions – LEA, LDS, LES

Mne
monic

Meaning Format Operation Flags 
Affected

LEA Load Effective 
Address

LEA Reg16,EA EA (Reg16) None

LDS Load Register and 
DS

LDS Reg16, 
MEM32

(Mem32) 
(Reg16)
(Mem32 + 2) 
(DS)

None

LES Load Register and 
ES

LES Reg16, 
MEM32

(Mem32) 
(Reg16)
(Mem32 + 2) 
(ES)

None



38

Examples for LEA, LDS, LES 

LDS BX, [DI]; 

DATAX  DW 1000H
DATAY  DW 5000H
.CODE
LEA SI, DATAX
MOV DI, OFFSET DATAY; THIS IS MORE EFFICIENT

LEA BX,[DI]; IS THE SAME AS…
MOV BX,DI; THIS JUST TAKES LESS CYCLES.

LEA BX,DI; INVALID!

7A
12
00
30

11000
11001
11002
11003

?BX

1000DI

1000DS

127A

3000



39

Arithmetic Instructions – ADD, ADC, INC, AAA, DAA

Mnemonic Meaning Format Operation Flags 
Affecte
d

ADD Addition ADD D, S (S) + (D) (D)
Carry (CF)

All

ADC Add with 
carry

ADC D, S (S) + (D) + (CF) (D)
Carry (CF)

All

INC Increment by 
one

INC D (D) + 1 (D) All but 
CY

AAA ASCII adjust 
after addition 
of two ASCII 
numbers

AAA Operate on AL (value in 
ASCII number) for the 
source
& adjust for BCD to AX

AF,CY

DAA Decimal 
adjust after 
addition

DAA Adjusts AL for decimal All



40

Examples

Ex. 1 ADD AX, 2
ADC AX, 2

Ex. 2 INC BX
INC word ptr [BX]

Ex. 3 ASCII CODE 0-9 = 30h –> 39h
MOV AX, 38H ;(ASCII code for number 8)
ADD AL, 39H ;(ASCII code for number 9)

AAA; used for addition  AX has 0107
ADD AX, 3030H; change answer to ASCII if you needed

Ex. 4 AL contains 25 (packed BCD)
BL contains 56 (packed BCD) 

ADD AL, BL
DAA

25

56

+ ----------

7B  81



41

Example

Write a program that adds two multiword numbers:

.MODEL SMALL

.STACK 64

.DATA

DATA1 DQ 548F9963CE7h; allocate 8 bytes

ORG 0010h

DATA2 DQ 3FCD4FA23B8Dh; allocate 8 bytes

ORG 0020h

DATA3 DQ ?



42

Example Cont’d
.CODE

MAIN PROC FAR
MOV AX,@DATA; receive the starting address for DATA
MOV DS,AX
CLC; clears carry 
MOV SI,OFFSET DATA1; LEA for DATA1
MOV DI,OFFSET DATA2; LEA for DATA2
MOV BX,OFFSET DATA3; LEA for DATA3
MOV CX,04h
BACK: MOV AX,[SI]

ADC AX,[DI]; add with carry to AX
MOV [BX],AX
ADD SI,2h
ADD DI,2h
ADD BX,2h

LOOP BACK; decrement CX automatically until zero
MOV AH,4Ch
INT 21h; halt

MAIN ENDP
END MAIN

INC SI
INC SI
INC DI
INC DI
INC BX
INC BX



43

Example Cont’d

After 1st word addition



44

Arithmetic Instrutions – SUB, SBB, DEC, AAS, DAS, NEG

Mnemonic Meaning Format Operation Flags 
Affected

NEG Negate NEG D 2’s complement 
operation

All

SUB Subtract SUB D, S (D) - (S) (D)
Borrow (CF)

All

SBB Subtract with 
borrow

SBB D, S (D) - (S) - (CF) (D) All

DEC Decrement by 
one

DEC D (D) - 1 (D) All but CY

DAS Decimal 
adjust for 
subtraction

DAS (convert the result in 
AL to packed decimal 
format)

All

AAS ASCII adjust 
after
subtraction

AAS (convert the result in 
AX to packed decimal 
format) 37-38 -> 09

CY, AC



45

Examples with DAS and AAS 

MOV BL, 28H

MOV AL, 83H

SUB AL,BL;    AL=5BH

DAS            ;    adjusted as AL=55H

MOV AX, 38H

SUB AL,39H ; AX=00FF

AAS ; AX=FF09 ten’s complement of  –1

OR AL,30H   ; AL = 39



46

Example on SBB

• 32-bit subtraction of two 32 bit numbers X and Y that are stored in
the memory as
– X = (DS:203h)(DS:202h)(DS:201h)(DS:200h)
– Y = (DS:103h)(DS:102h)(DS:101h)(DS:100h)

• The result X - Y to be stored where X is saved in the memory

MOV SI, 200h
MOV DI, 100h
MOV AX, [SI]
SUB AX, [DI]
MOV [SI], AX    ;save the LS word of result
MOV AX, [SI] +2 ; carry is generated from the first sub?
SBB AX, [DI] +2 ; then subtract CY this time!
MOV [SI] +2, AX

Ex. 12 34 56 78 – 23 45 67 89 = EE EE EE EF



47

Multiplication and Division

Multiplication
(MUL or IMUL)

Multiplicant Operand 
(Multiplier)

Result

Byte * Byte AL Register or 
memory

AX

Word * Word AX Register or 
memory

DX :AX

Dword * Dword EAX Register or 
Memory

EDX :EAX

Division
(DIV or IDIV)

Dividend Operand 
(Divisor)

Quotient : 
Remainder

Word / Byte AX Register or 
memory

AL : AH

Dword / Word DX:AX Register or 
memory

AX : DX

Qword / Dword EDX: EAX Register or 
Memory

EAX : EDX



48

Unsigned Multiplication Exercise

DATAX DB 4EH
DATAY DW 12C3H
RESULT DQ DUP (?)

Find: Result = Datax * Datay

; one possible solution
XOR AX,AX ; or MOV AX, 0000H
LEA SI, DATAX
MOV AL,[SI]
MUL DATAY
LEA DI, RESULT
MOV [DI],AX
MOV [DI+2],DX



49

AAM, AAD, CBW, CWD
• AAM: Adjust AX after multiply

MOV AL,07   ; MOV CL,09; unpacked numbers
MUL CL        ; second unpacked number multiplied with AL
AAM             ; AX unpacked decimal representation: 06 03

• AAD: Adjust AX (before) for divide
– AX converted from two unpacked BCD into Binary before division
– For ex: MOV AX,0208h;dividend  AAD forms: AX=001C

• CBW instruction. Division instructions can also be used to divide an 8 bit dividend in 
AL by an 8 bit divisor.

– In order to do so, the sign of the dividend must be extended to to fill the AX register
– AH is filled with zeros if AL is positive
– AH is filled with ones if the number in AL is negative
– Automatically done by executing  the CBW (convert byte to word) instruction. Simply extends 

the sign bit into higher byte.
• CWD (convert word to double word)

Ex. MOV AL, 0A1h
CBW; convert byte to word
CWD; convert word to double word (push sign into DX)

Ex. MOV BL,9
MOV AX,0702H

;convert to binary first
AAD; 00-99
DIV BL



50

Example 
• Write a program that calculates the average of five temperatures and writes the result  
in AX

DATA DB    +13,-10,+19,+14,-18 ;0d,f6,13,0e,ee
MOV CX,5 ;LOAD COUNTER
SUB BX, BX ;CLEAR BX, USED AS ACCUMULATOR
MOV SI, OFFSET DATA ;SET UP POINTER

BACK: MOV AL,[SI] ;MOVE BYTE INTO AL
CBW ;SIGN EXTEND INTO AX
ADD BX, AX ;ADD TO BX
INC SI ;INCREMENT POINTER
DEC CX ;DECREMENT COUNTER
JNZ BACK
mov ax,bx ;LOOP IF NOT FINISHED
MOV CL,5 ;MOVE COUNT TO AL
DIV CL ;FIND THE AVERAGE                                   



51

Logical Instructions [reset CY and reset OF]

• AND
– Uses any addressing mode except memory-to-memory and segment 

registers. Places the result in the first operator.
– Especially used in clearing certain bits (masking)

• xxxx xxxx AND 0000 1111 = 0000 xxxx (clear the first four bits)
– Examples: AND BL, 0FH;  AND AL, [345H]  

• OR 
– Used in setting certain bits

• xxxx xxxx OR 0000 1111  = xxxx 1111 

• XOR 
– Used in inverting bits

• xxxx xxxx XOR 0000 1111 = xxxx yyyy

• Ex. Clear bits 0 and 1, set bits 6 and 7, invert bit 5

AND CX, OFCH    1111 1100
OR CX, 0C0H        1100 0000
XOR CX, 020H      0010 0000
XOR AX.,AX



52

Turn the CAPS LOCK on

(caps.asm)
push ds ; save the current ds

mov ax,40h ; new ds at BIOS

mov ds,ax

mov bx,17h   ;keyboard flag byte

xor byte ptr[bx],01000000b ;now you altered CAPS

pop ds

MOV Ah,4CH

INT 21H



53

TEST

• TEST instruction performs the AND operation but it does not change 
the destination operand as in AND but only the flags register. 

• Similar to CMP bit it tests a single bit or occasionally multiple bits. 
• Ex. TEST DL, DH ;  TEST AX, 56

TEST AL, 1    ; test right bit
JNZ RIGHT    ; if set
TEST AL, 128 ; test left bit
JNZ LEFT       ; if set


